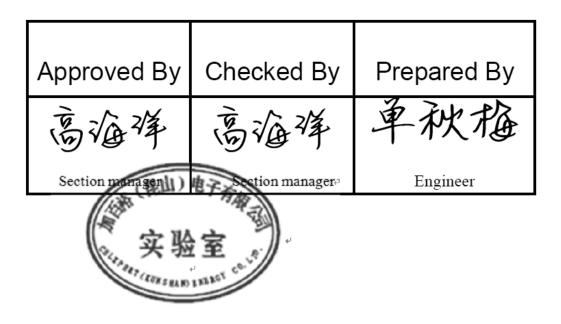


Celxpert(kunshan)Energy Co.,Ltd

Battery Pack UN38.3 Test Report

Customer: Lenovo


Model: L19C4PD1

Rating: 7.68V

Capacity:Typical 7820mAh/60Wh

Rated 7630mAh/58.6Wh

IssueDate:Mar.27.2019

1.Standard

UN38.3S-T/SG/AC.10/11/Rev.6/Amend.1

2.Sample Description

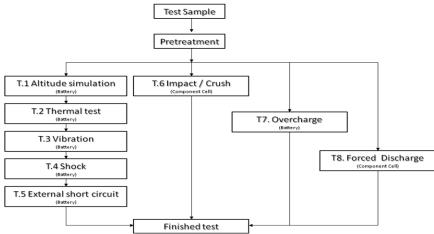
Model Name	L19C4PD1	Pack Configuration	2S2P
Sample type	Pack 16pcs/Cell 30pcs	Use	NB
Cell Factory/Model	Coslight CA4344C8G(OT85C-20) 3815mAh	Battery weight	237.31g
Factory Address	Hi-Tech Industrial Park, 1111 Hanpu Rd, Kun Shan, Jiangsu 215316, China	Laboratory Address:	Hi-Tech Industrial Park, 1111 Hanpu Rd, Kun Shan, Jiangsu 215316, China
Factory Name:	Celxpert (kunshan) Enengy.,Ltd	Laboratory Name:	品保部實驗室
Factory TEL	+86-512-57775999	Laboratory Tel:	+86-512-57775999
Factory E-mail:	Frank_Gao@cn.celxpert.com	Laboratory E-mail:	Frank_Gao@cn.celxpert.com
Factory Web:	www. celxpert.com.tw	Laboratory Web:	www. celxpert.com.tw
Client Date	2019/03/11	Completing Data	2019/03/26

3. Test items and quantity

- T.1. Altitude simulation
- T.2. **⊠** Thermal test
- T.3. **⊠** Vibration
 - Shock

- T.5. 🗵 External short circuit
- □ Impact /⊠ Crush **T.6**.
- ☑ Overcharge T.7.

🛛 Shock		T.8 .	×	Forced	dischar	rge						
summary table of required test for rechargeable cells and batteries												
		T.1	T.2	T.3	T.4	T.5	T.6	T.7	T.8	SUM		
	First cycle,50% charged state						5					
	25th cycle,50% charged state						5					
	First cycle, fully discharged state								10	- 30		
	25th cycle, fully discharged state								10			
Small	First cycle, fully charged state	4				4		40				
batteries	25th cycle, fully charged state	4						4		16		
Large	First cycle, fully charged state			2				2				
batteries	25th cycle, fully charged state	2					2		8			
	Small batteries Large	mary table of required test First cycle,50% charged state 25th cycle,50% charged state 25th cycle,50% charged state 5th cycle, fully discharged state 25th cycle, fully discharged state Small batteries 25th cycle, fully charged state Large	mary table of required test for i T.1 First cycle,50% charged state 25th cycle,50% charged state 25th cycle, fully discharged state 25th cycle, fully discharged state 25th cycle, fully discharged state Small First cycle, fully charged state 25th cycle, fully charged state Large	mary table of required test for recha T.1 T.2 First cycle,50% charged state	mary table of required test for rechargesT.1T.2T.3First cycle,50% charged state25th cycle,50% charged state25th cycle, fully discharged state25th cycle, fully discharged state25th cycle, fully discharged state25th cycle, fully discharged stateSmallFirst cycle, fully charged state4batteries25th cycle, fully charged state4LargeFirst cycle, fully charged state2	mary table of required test for rechargeable ofT.1T.2T.3T.4First cycle,50% charged stateIII25th cycle,50% charged stateIII25th cycle,50% charged stateIIIFirst cycle, fully discharged stateIII25th cycle, fully discharged stateIIISmallFirst cycle, fully charged stateIIbatteries25th cycle, fully charged stateIILargeFirst cycle, fully charged stateII	The second decided of the second decided dec	T.1 T.2 T.3 T.4 T.5 T.6 First cycle,50% charged state Image: State	The second of t	mary table of required test for rechargeable cells and batteriesT.1T.2T.3T.4T.5T.6T.7T.8First cycle,50% charged stateIIIIIII25th cycle,50% charged stateIIIIIII25th cycle, fully discharged stateIIIIIII25th cycle, fully discharged stateIIIIIIISmallFirst cycle, fully charged stateIIIIIIbatteries25th cycle, fully charged stateIIIIIILargeFirst cycle, fully charged state <tdi< td="">IIIIIIImageImag</tdi<>		


4.Photo of The Sample

7.680 --- Typical Capacity 7820mAh / 60Wh, Rated Capacity 7630mAh / 58.6 额定容量: 7630mAh 充电限制电压(limited charging voltage): 8.8V For use with Lenovo personal computer

制造商:加百裕工业股份有限公司

5.Test Procedure

6.Test method and verdict

Clause	Rec	Result	Verdict						
	Mass loss means a loss of mass that exceeds the values in table 38.3.1 below								
Table		Table 38.3.1:M	ass loss limit						
		Mass M of cell or battery	Mass loss limit						
38.3.1		M<1g	0.5%						
		1g≦M≦75g	0.2%						
		M>75g	0.1%						
		T1 :Altitude	simulation						
	This test simulates air transport under	low-pressure cond	itions		No leakage				
38.3.4.1	Test cells and batteries shall be stored hour at ambient temperature ($20\pm5^\circ$ C)	at a pressure of 11.	.6kPa or less for at le	east six	no venting no disassemble no rupture				
	Cells and batteries meet this requirem disassemble, no rupture and no fire and if after testing is not less than 90% of its volt requirement relating to voltage is not appl states	the open circuit vo age immediately pi	ltage of each test cel rior to this procedur	ll or battery e. The	no fire. voltage not less than 90% Mass loss limit (see table 38.3.1)	Р			
		T2:Ther	mal test						
	This test assesses cell and battery seal test is conducted using rapid and extre								
38.3.4.2	Test cells and batteries are to be stored to 72±2°C, followed by storage for at least °C. The maximum time interval between t procedure is to be repeated until 10 total o batteries are to be stored for 24 hours at a and batteries the duration of exposure to t	o – 40±2 s. This cells and arge cells	No leakage no venting no disassemble no rupture no fire voltage not less	Р					
	hours. Cells and batteries meet this requirem disassemble, no rupture and no fire and if after testing is not less than 90% of its volt requirement relating to voltage is not appl states.	o ll or battery re. The	than 90% Mass loss limit (see table 38.3.1).						
		T3:Vib	ration						
38.3.4.3	This test simulates vibration during tra Cells and batteries are firmly secured t distorting the cells in such a manner as to shall be a sinusoidal waveform with a loga to 7 Hz traversed in 15 minutes. This cycle for each of three mutually perpendicular n of vibration must be perpendicular to the For cells and small batteries: from 7 Hz Hz is reached. The amplitude is then maint frequency increased until a peak accelerat acceleration of 8gn is then maintained unt For large batteries: from 7 Hz to a peak reached. The amplitude is then maintained frequency increased until a peak accelerat acceleration of 2gn is then maintained frequency increased until a peak accelerat acceleration of 2gn is then maintained frequency increased until a peak accelerat acceleration of 2gn is then maintained frequency increased until a peak accelerat acceleration of 2gn is then maintained is sasemble, no rupture and no fire during voltage of each test cell or battery directly position is not less than 90% of its voltage requirement relating to voltage is not appl states.	No leakage no venting no disassemble no rupture no fire. voltage not less than 90% Mass loss limit (see table 38.3.1)	Р						

Clause	Requirements	Result	Verdict
	T4:Shock		
	This test assesses the robustness of cells and batteries against cumulative shocks		
	Test cells and batteries shall be secured to the testing machine by means of a rigid mount which will support all mounting surfaces of each test battery		
38.3.4.4	Each cell shall be subjected to a half-sine shock of peak acceleration of 150gn and pulse duration of 6 milliseconds. Alternatively, large cells may be subjected to a half-sine shock of peak acceleration of 50gn and pulse duration of 11 milliseconds. Each battery shall be subjected to a half-sine shock of peak acceleration depending on	No leakage no venting no disassemble no rupture no fire. voltage not less than 90% Mass loss limit (see table 38.3.1)	
50.5.1.1	the mass of the battery. The pulse duration shall be 6 milliseconds for small batteries and 11 milliseconds for large batteries. The formulas below are provided to calculate the appropriate minimum peak accelerations.		Р
	Each cell or battery is subjected to three shocks in the positive direction followed by three shocks in the negative direction of each of three mutually perpendicular mounting positions of the cell for a total of 18 shocks.		
	Cells and batteries meet this requirement if there is no kakage, no venting, no disassemble, no rupture and no fire and if the open circuit voltage of each test cell or battery after testing is not less than 90% of its voltage immediately prior to this procedure. The requirement relating to voltage is not applicable to test cells and batteries at fully discharged states.		
	T5:External short circuit		
	This test simulates an external short circuit		
38.3.4.5	The cell or battery to be tested shall be shall be heated for a period of time necessary to reach a homogeneous stabilized temperature of $57\pm4^{\circ}$ C, measured on the external case. This period of time depends on the size and design of the cell or battery and should be assessed and documented. If this assessment is not feasible, the exposure time shall be at least 6 hours for small cells and small batteries, and 12 hours for large cells and large batteries. Then the cell or battery at $57\pm4^{\circ}$ C shall be subjected to one short circuit condition with a total external resistance of less than 0.1 ohm. This short circuit condition is continued for at least one hour after the cell or battery external case temperature has returned to $57\pm4^{\circ}$ C, or in the case of the large batteries, has decreased by half of the maximum temperature increase observed during the test and remains below that value. The short circuit and cooling down phases shall be conducted at least at ambient temperature.	no disassemble no rupture no fire. Packs exterior peak temperature <170°C Mass loss limit (see table 38.3.1)	Р
	Cells and batteries meet this requirement if their external temperature does not exceed 170° C and there is no disassemble, no rupture and no fire within six hours of this test.		

Clause	Requirements	Result	Verdict							
	T6:Impact/Crush									
	These tests simulate mechanical abuse from an impact or crush that may result in an internal short circuit.									
	Impact applicable to cylindrical cells not less than 18.00 in diameter.									
	The test sample cell or component cell is to be placed on a flat smooth surface. A $15.8 \text{mm} \pm 0.1 \text{mm}$ diameter, at least 6cm long, or the longest dimension of the cell, whichever is greater, Type 316 stainless steel bar is to be placed across the centre of the sample. A 9.1 kg \pm 0.1kg mass is to be dropped from a height of 61 \pm 2.5 cm at the intersection of the bar and sample in a controlled manner using a near frictionless, vertical sliding track or channel with minimal drag on the falling mass. The vertical track or channel used to guide the falling mass shall be oriented 90 degrees from the horizontal supporting surface.									
	The test samples is to be impacted with its longitudinal axis parallel to the flat surface and perpendicular to the longitudinal axis of the 15.8mm±0.1mm diameter curved surface lying across the centre of the test samples. Each sample is to be subjected to only a single impact.									
38346	Crush applicable to prismatic, pouch, coin/button cells and cylindrical cells less than 18mm in diameter.	no disassemble no rupture								
38.3.4.6	A cell or component cell is to be crushed between two flat surfaces. The crushing is to be gradual with a speed of approximately 1.5cm/s at the first point of contact. The crushing is to be continued until the first of the three options below is reached. (a) The applied force reaches 13kN±0.78kN; Example : The force shall be applied by a hydraulic ram with a 32 mm diameter piston until a pressure of 17 MPa is reached on the hydraulic ram (b) The voltage of the cell drops by at least 100mV; or (c) The cell is deformed by 50% or more of its original thickness.	no fire. not exceed 170°C Mass loss limit (see table 38.3.1)	Р							
	Once the maximum pressure has been obtained, the voltage drops by 100mV or more, or the cell is deformed by at least 50% of its original thickness, the pressure shall be released									
	A prismatic or pouch cell shall be crushed by applying the force to the widest side. A button/coin cell shall be crushed by applying the force on its flat surfaces. For cylindrical cells, the crush force shall be applied perpendicular to the longitudinal axis.									
	Each test cell or component cell is to be subjected to one crush only. The test Samples shall be observed for a further 6 h. The test shall be conducted using test cells or component cells that have not previously been subjected to other tests.	-								
	Cells and component cells meet this requirement if their external temperature does not exceed 170 $^{\circ}$ C and there is no disassemble and no fire during the test and within six hours after this test.									

Clause	Requirements	Result	Verdict						
	T7:Ovecharge								
	This test evaluates the ability of a rechargeable battery or a single cell rechargeable battery to withstand an overcharge condition								
	The charge current shall be twice the manufacturer's recommended maximum continuous charge current. The minimum voltage of the test shall be as follows:	No disassemble no fire. Mass loss limit (see table 38.3.1)							
38.3.4.7	(a) When the manufacturer's recommended charge voltage is not more than 18V, the minimum voltage of the test shall be the lesser of two times the maximum charge voltage of the battery or 22V.		Р						
	(b) When the manufacturer's recommended charge voltage is more than 18V, the minimum voltage of the test shall be 1.2 times the maximum charge voltage.								
	Tests are to be conducted at ambient temperature; the duration of the test shall be 24 hours								
	Rechargeable batteries meet this requirement if there is no disassemble and no fire during the test and within seven days after the test.								
	T8:Forced discharge								
	This test evaluates the ability of a primary or a rechargeable cell to withstand a forced discharge condition								
38.3.4.8	Each cell shall be forced discharged at ambient temperature by connecting it in series with a 12V D.C. power supply at an initial current equal to the maximum discharge current specified by the manufacturer.	no disassembly no fire Mass loss limit (see table 38.3.1)							
	The specified discharge current is to be obtained by connecting a resistive load of the appropriate size and rating in series with the test cell. Each cell shall be forced discharged for a time interval (in hours) equal to its rated capacity divided by the initial test current (in ampere).		Р						
	Primary or rechargeable cells meet this requirement if there is no disassembly and no fire during the test and within seven days after the test.								

7.Test Data

3	8.3.4.1	3.3.4.1 T1.Altitude simulation								
Test	Equipment	Digital Meter :	Q153 ,	n : Q0443	, Scales : Q	090				
Test Period Start: 2019/03/11 End:2019/03/11										
Altitude Simulation Test on Charged Packs										
		Before		fter	voltage residue	mass loss				
No.		Weight	OCV	Weight	Volt	Weight	other event			
	(V)	(g)	(V)	(g)	(%)	(%)				
1	8.349	237.45	8.337	237.45	99.86%	0.00%	0			
2	8.343	236.52	8.332	236.52	99.87%	0.00%	0			
3	8.351	237.92	8.338	237.92	99.84%	0.00%	0			
4	8.348	237.59	8.334	237.59	99.83%	0.00%	0			
5	8.369	237.19	8.357	237.19	99.86%	0.00%	0			
6	8.349	237.65	8.334	237.65	99.82%	0.00%	0			
7	8.397	237.19	8.385	237.18	99.86%	0.00%	0			
8	8.354	236.49	8.343	236.49	99.87%	0.00%	0			
Note:		-Venting ; D-Disas	2 C C							
	O-No Leak	age , No Venting ,	No Disassembly	, No Rupture , No	Fire					
3	8.3.4.2			T2.Tł	iermal test					
Test	Equipment	Digital Meter :	Q153 , Pro	grammable T	hermal Tester : C	0446 , Scal	es : Q090			
Tes	st Period	Start:2019/03/	12	End:2019/0	3/18					
			Thermal	Test on Char	ged Packs					
		efore	Afte		voltage residue	mass loss				
No.	OCV	Weight	OCV	Weight	Volt	Weight	other event			
	(V)	(g)	(V)	(g)	(%)	(%)				
1	8.337	237.45	8.273	237.40	99.23%	0.02%	0			
2	8.332	236.52	8.281	236.47	99.39%	0.02%	0			
3	8.338	237.92	8.269	237.89	99.17%	0.01%	0			
4	8.334	237.59	8.273	237.54	99.27%	0.02%	0			
5	8.357	237.19	8.290	237.15	99.20%	0.01%	0			
6	8.334	237.65	8.263	237.60	99.15%	0.02%	0			
7	8.385	237.18	8.316	237.16	99.18%	0.01%	0			
8	8.343	236.49	8.292	236.46	99.39%	0.01%	0			
	_	-Venting ; D-Disas								
	O-No Leakage	e , No Venting , No	Disassembly , No	Rupture, No Fire	e					

38	.3.4.3	T3.Vibrationt								
Test Eq	quipment	Digital Meter :	Q153 , Vi	bration Teste	r:Q300,S	cales : Q153				
Test	Period	Start: 2019/03/	'19 En	d:2019/03/20						
Vibration Test on Charged Packs										
		Before	Afte	r	voltage residue	mass loss				
No.	OCV	Weight	OCV	Weight	Volt	Weight	other event			
	(V)	(g)	(V)	(g)	(%)	(%)				
1	8.273	237.40	8.259	237.39	99.83%	0.00%	0			
2	8.281	236.47	8.266	236.44	99.82%	0.01%	0			
3	8.269	237.89	8.252	237.86	99.79%	0.01%	0			
4	8.273	237.54	8.257	237.52	99.81%	0.01%	0			
5	8.290	237.15	8.276	237.14	99.83%	0.01%	0			
6	8.263	237.60	8.250	237.58	99.84%	0.01%	0			
7	8.316	237.16	8.305	237.13	99.87%	0.01%	0			
8	8.292	236.46	8.277	236.43	99.82%	0.01%	0			
Note: L-		-Venting ; D-Disas		ure : F-Fire						
		age , No Venting ,		-	o Fire					
38	.3.4.4			T.	4 Shock		,			
		Digital Mator :	0152 84			es : Q090				
Test Eq	Juipment	Digital Meter :	Q155 , SI	nock Tester :		35.0090				
Test	Period	Start: 2019/03/	'21 H	End:2019/03/	21					
	-		Shock	Test on Charg	ed Packs					
		Before		fter	voltage residue	mass loss				
No.	OCV	Weight	ocv	Weight	Volt	Weight	other event			
1	(V) 8.259	(g) 237.39	(V) 8.245	(g) 237.37	(%) 99.83%	(%)	0			
2	8.259	237.39	8.245	237.37	99.85%	0.01%	0			
2	8.200	230.44	8.234	230.41	99.83%	0.01%	0			
4	8.252	237.80	8.238	237.85	99.83%	0.01%	0			
4 5	8.257	237.52	8.244	237.49	99.84%	0.01%	0			
5 6	8.270	237.14	8.204	237.54	99.88%	0.02%	0			
7	8.305	237.38	8.230	237.34	99.85%	0.00%	0			
8	8.303	236.43	8.293	237.12	99.80%	0.00%	0			
		Venting ; D-Disasse			22.0 1 /0	0.0170	0			
	_	age , No Venting , N			e					
		.					1			

38.3.4.5	T.5 Short circuit							
Test Equipment	Digital							
Test Period	Start:2019/03/25 End:2019/03/26							
		Sho	rt Circuit Test	on Cl	harged Pack	s		
		No.	Max. Temp.(C)	Othe	r event		
		1	57.46			0		
		2	57.98			0		
		3	57.26			0		
		4	56.95			0		
		5	56.28			0		
		6	57.23			0		
		7	58.49			0		
		8	57.16			0		
	1	Note: D-Disas	sembly ; R-Rupt	ure ; F	-Fire			
		O- No D	isassembly , No	Ruptu	ire , No Fire			
38.3.4.6]	[.6 Im]	pact / Crush			
Test Equipment	Digital Q231	Meter: Q153	B Data Logg	er: Q	152 Impa	ct tester/Crus	h tester: Q437/	
Test Period	Start: 20)19/03/11	End	:2019	/03/12			
			Crush Test on	50%	Charged			
	No.	Max. Temp.(°C)	Other event	No.	Max. Temp.(°C)	Other event		
	1	20.36	0	6	21.59	0		
	2	20.45	0	7	21.35	0		
	3	20.59	0	8	20.45	0		
	4	21.75	0	9	20.58	0		
5 2		21.59	0	10	21.47	0		
	Note:	D-Disasseml	bly;F-Fire / O-	No Dis	assembly , N	lo Fire		

38.3.4.7		T 7 Ovecharge								
Test Equipme)igital Meter: 0148/Q150/Q02		ata Logg	er: Q078	Power	Supply unit :			
Test Peri	od S	tart:2019/03/13	End:20	19/03/14						
		Ove	rcharge Test	on Cha	rged Pac	ks				
	No	Charge Voltage(V)	Charge Current(A)	Max. T	emp.(°C)	Other even	t			
	9				3.59	0				
	10				3.15	0				
	11	_			2.48	0				
	12	- 176V	9.384A		2.53 3.75	0	_			
	14	_			9.48	0				
	15	_			2.51	0				
	16			22	.95	0				
	Not	e: D-Disassem	bly;F-Fire / C	D-No Disa	ssembly ,N	lo Fire				
38.3.4.8	3			T8 Forced	discharge					
Test Equipme		9 0474/Q0475/Q		Data logę	ger: Q160	Power	Supply unit :			
Test Peri	od S	tart:2019/03/18	End:2	019/03/20)					
Forced	discha	arge are first o discharged	cycle in fully	Forced o	-	are after 25 cyc y discharged	cles ending in			
No.	Ma	k. Temp.(°C)	Other event	No.		Temp.(°C)	Other event			
11		29.36	0	21		9.50	0			
12		28.56	0	22		0.58	0			
13		29.54	0	23		0.48	0			
14		28.59	0	24	2	9.58	0			
15		28.49	0	25		8.15	0			
16		30.65	0	26	3	0.65	0			
17	30.46		0	27	3	31.48	0			
18	31.25		0	28	3	31.02	0			
19		31.28	0	29	31.77		0			
20		29.17	0	30	2	9.58	0			
Note:D-Di	sasse	mbly;F-Fire /	O-No Disasse	mbly , No	Fire					