Lithium-ion Battery UN38.3 Test Report

Recommendations on the TRANSPORT OF DANGEROUS GOODS

(Manual of Tests and Criteria, Sixth revised edition, Amend 1)

Customer: Lenovo
Model: L19M4PF4
Rating/ Mass: 15.36V ,Typical Capacity 3960mAh/ 60.7Wh
Rated Capacity 3875mAh/ 58.9Wh/ 254 (g)
Issue date: 2019/08/30

<table>
<thead>
<tr>
<th>Approved By</th>
<th>Checked By</th>
<th>Prepared By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Manager</td>
<td>Authorized Signatory</td>
<td>Test Engineer</td>
</tr>
<tr>
<td>Sin</td>
<td>Huang</td>
<td>Martin</td>
</tr>
</tbody>
</table>

SIMPLO TECHNOLOGY CO., LTD.
ADD : No. 471 Pa Teh Rd, Sec 2 Hu Kou, Hsinchu Hsien, 303 Taiwan
TEL: +886-3-5695920 FAX: +886-3-5695931

SIMPLO TECHNOLOGY (CHANGSHU) INC.
ADD : No.888 Dongnan Avenue, Changshu New & Hi-Tech Industrial Development Zone, Changshu, Jiangsu, China
TEL: +86-512-52302255 FAX: +86-512-52302277

SIMPLO TECHNOLOGY (CHONGQING) INC.
ADD : No.2 Zongbao Avenue, Shapingba District, ChongQing, China
TEL: +86-23-61718899 FAX: +86-23-61210488

HUAPU TECHNOLOGY (CHANGSHU) INC.
ADD : No.888 Dongnan Avenue, Changshu New & Hi-Tech Industrial Development Zone, Changshu, Jiangsu, China
TEL: +86-512-52302255 FAX: +86-512-52302277

Email : Test_Lab@simplo.com.tw Website : http://www.simplo.com.tw/
1. Purpose of the Test:

To test each cell/battery is of the type proved to meet the requirements in United Nations Recommendations on the TRANSPORT OF DANGEROUS GOODS, Manual of Tests and Criteria, Sixth revised edition, Amend 1, Section 38.3.

2. Test Result:

Test results of the UN Recommendations on the Transport of Dangerous Goods

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Item</th>
<th>Test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.1</td>
<td>Altitude simulation</td>
<td>PASS</td>
</tr>
<tr>
<td>T.2</td>
<td>Thermal test</td>
<td>PASS</td>
</tr>
<tr>
<td>T.3</td>
<td>Vibration test</td>
<td>PASS</td>
</tr>
<tr>
<td>T.4</td>
<td>Shock test</td>
<td>PASS</td>
</tr>
<tr>
<td>T.5</td>
<td>External short circuit</td>
<td>PASS</td>
</tr>
<tr>
<td>T.6</td>
<td>Impact, Crush test</td>
<td>PASS</td>
</tr>
<tr>
<td>T.7</td>
<td>Overcharge</td>
<td>PASS</td>
</tr>
<tr>
<td>T.8</td>
<td>Forced discharge</td>
<td>PASS</td>
</tr>
</tbody>
</table>

3. Test Lab: Email: Test_Lab@simplo.com.tw Website: http://www.simplo.com.tw/

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Address</th>
<th>Telephone</th>
<th>Facsimile</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPLO (Taiwan) Laboratory</td>
<td>ADD : No. 471 Pa Teh Rd, Sec 2 Hu Kou, Hsinchu Hsien, 303 Taiwan</td>
<td>+886-3-5695920</td>
<td>+886-3-5695931</td>
</tr>
<tr>
<td>SIMPLO (CHANGSHU) Laboratory</td>
<td>ADD : No.888 Dongnan Avenue, Changshu New & Hi-Tech Industrial Development Zone, Changshu, Jiangsu, China</td>
<td>+86-512-52302255</td>
<td>+86-512-52302277</td>
</tr>
<tr>
<td>SIMPLO (CHONGQING) Laboratory.</td>
<td>ADD : No.2 Zongbao Avenue, Shapingba District, ChongQing, China</td>
<td>+86-23-61718899</td>
<td>+86-23-61210488</td>
</tr>
</tbody>
</table>
4. Product manufacturer: Email: Test_Lab@simplo.com.tw Website: http://www.simplo.com.tw/

●	SIMPLO TECHNOLOGY CO., LTD.
	ADD: No. 471 Pa Teh Rd, Sec 2 Hu Kou, Hsinchu Hsien, 303 Taiwan
	TEL: +886-3-5695920 FAX: +886-3-5695931

●	SIMPLO TECHNOLOGY (CHANGSHU) INC.
	ADD: No.888 Dongnan Avenue, Changshu New & Hi-Tech Industrial Development Zone, Changshu, Jiangsu, China
	TEL: +86-512-52302255 FAX: +86-512-52302277

●	SIMPLO TECHNOLOGY (CHONGQING) INC.
	ADD: No.2 Zongbao Avenue, Shapingba District, ChongQing, China
	TEL: +86-23-61718899 FAX: +86-23-61210488

●	HUAPU TECHNOLOGY (CHANGSHU) INC.
	ADD: No.888 Dongnan Avenue, Changshu New & Hi-Tech Industrial Development Zone, Changshu, Jiangsu, China
	TEL: +86-512-52302255 FAX: +86-512-52302277

5. Test Quantity:

5.1 Four batteries, at first cycle, in fully charged states. (For T.1~T.5)
5.2 Four batteries, after 25 cycles ending in fully charged states. (For T.1~T.5)
5.3 Five component cells, at first cycle at 50% of the design rated capacity. (For T.6)
5.4 Five component cells, after 25 cycles at 50% of the design rated capacity. (For T.6)
5.5 Four batteries, at first cycle, in fully charged states. (For T.7)
5.6 Four batteries, after 25 cycles ending in fully charged states. (For T.7)
5.7 Ten component cells, at first cycle in fully discharge states. (For T.8)
5.8 Ten component cells, after 25 cycles ending in fully discharged states. (For T.8)
6. Test Procedure:

6.1 All detailed test procedures must be based on United Nations Recommendations on
the TRANSPORT OF DANGEROUS GOODS, Manual of Tests and Criteria, Sixth revised
dition, Amend 1, Section 38.3.
6.2 Test flow shall be followed as below.

Conclusion: The samples had passed the test items of UN38.3.

7. Comment: N/A
8. Test Equipment:

![SMP Logo]

Test Instruments Reference List

<table>
<thead>
<tr>
<th>Used</th>
<th>Instrument ID</th>
<th>Instrument Name</th>
<th>Type</th>
<th>Range of use</th>
<th>Manufacturer</th>
<th>Calibration Date Last</th>
<th>Calibration Date Next</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest</td>
<td>V ML-761 Learning</td>
<td>715C</td>
<td>0-18V 0-8A</td>
<td>SMP</td>
<td>2019/2/25</td>
<td>2020/2/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-762 Learning</td>
<td>715C</td>
<td>0-18V 0-8A</td>
<td>SMP</td>
<td>2019/1/3</td>
<td>2020/1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-763 Learning</td>
<td>715C</td>
<td>0-18V 0-8A</td>
<td>SMP</td>
<td>2019/2/26</td>
<td>2020/2/26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-764 Learning</td>
<td>715C</td>
<td>0-18V 0-8A</td>
<td>SMP</td>
<td>2019/1/3</td>
<td>2020/1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-525 Learning</td>
<td>750CC</td>
<td>0-60V 0-35A</td>
<td>SMP</td>
<td>2019/1/3</td>
<td>2020/1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.1 Altitude Simulation</td>
<td>V ML-522 Altitude</td>
<td>SV1-12D</td>
<td>kPa: 30-90</td>
<td>HSIN JIANG</td>
<td>2019/7/17</td>
<td>2020/7/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-257 Multimeter</td>
<td>34401A</td>
<td>Note 1</td>
<td>Agilent</td>
<td>2019/2/26</td>
<td>2020/2/26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-494 Electronic Balance</td>
<td>XS1220M-SCS</td>
<td>1-1220 gF</td>
<td>PRECISA</td>
<td>2019/7/17</td>
<td>2020/7/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-523 Electronic Balance</td>
<td>MTW-30K</td>
<td>300.00kg</td>
<td>CENTER</td>
<td>2019/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.2 Thermal Test</td>
<td>V ML-789 Thermal Shock</td>
<td>GTST-080-65-AW</td>
<td>0-40 to 100°C</td>
<td>GF</td>
<td>2019/1/3</td>
<td>2020/1/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-257 Multimeter</td>
<td>34401A</td>
<td>note 1</td>
<td>Agilent</td>
<td>2019/2/26</td>
<td>2020/2/26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-494 Electronic Balance</td>
<td>XS1220M-SCS</td>
<td>1-1220 gF</td>
<td>PRECISA</td>
<td>2019/7/17</td>
<td>2020/7/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-523 Electronic Balance</td>
<td>MTW-30K</td>
<td>300.00kg</td>
<td>CENTER</td>
<td>2019/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-257 Multimeter</td>
<td>34401A</td>
<td>note 1</td>
<td>Agilent</td>
<td>2019/2/26</td>
<td>2020/2/26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-494 Electronic Balance</td>
<td>XS1220M-SCS</td>
<td>1-1220 gF</td>
<td>PRECISA</td>
<td>2019/7/17</td>
<td>2020/7/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-523 Electronic Balance</td>
<td>MTW-30K</td>
<td>300.00kg</td>
<td>CENTER</td>
<td>2019/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-257 Multimeter</td>
<td>34401A</td>
<td>note 1</td>
<td>Agilent</td>
<td>2019/2/26</td>
<td>2020/2/26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-494 Electronic Balance</td>
<td>XS1220M-SCS</td>
<td>1-1220 gF</td>
<td>PRECISA</td>
<td>2019/7/17</td>
<td>2020/7/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-523 Electronic Balance</td>
<td>MTW-30K</td>
<td>300.00kg</td>
<td>CENTER</td>
<td>2019/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.5 External Short Circuit</td>
<td>V ML-664 Battery Hitter</td>
<td>BT3562</td>
<td>1mΩ ~ 30kΩ</td>
<td>HIOKI</td>
<td>2018/8/11</td>
<td>2020/6/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-459 Data Acquisition</td>
<td>MX100-E1-D</td>
<td>1-100 Vdc, ±50 to 200V</td>
<td>Yokogawa</td>
<td>2018/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-460 Data Acquisition</td>
<td>MX100-E1-D</td>
<td>1-100 Vdc, ±50 to 200V</td>
<td>Yokogawa</td>
<td>2018/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-521 Oven</td>
<td>9031</td>
<td>30-80 °C</td>
<td>YEO LONG</td>
<td>2018/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.6 Impact/Crush</td>
<td>V ML-458 Data Acquisition</td>
<td>XL122-D</td>
<td>1-100 Vdc, ±50 to 150V</td>
<td>Yokogawa</td>
<td>2018/9/12</td>
<td>2020/6/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-676 Impact Tester</td>
<td>V ML-658 Data Acquisition</td>
<td>MX100-E1-D</td>
<td>1-100 Vdc, ±50 to 200V</td>
<td>Yokogawa</td>
<td>2018/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-553 Crash Tester</td>
<td>Becht</td>
<td>500N</td>
<td>JT SHENG</td>
<td>2019/10</td>
<td>2020/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-609 Crash Tester</td>
<td>M0054</td>
<td>500N</td>
<td>JT SHENG</td>
<td>2019/8</td>
<td>2020/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V ML-459 Data Acquisition</td>
<td>MX100-E1-D</td>
<td>1-100 Vdc, ±50 to 200V</td>
<td>Yokogawa</td>
<td>2018/9/12</td>
<td>2019/9/12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form No.: W11-002-B05

This test report is valid only to the items, Invalid for separation using.
<table>
<thead>
<tr>
<th>Used Instrument ID</th>
<th>Instrument Name</th>
<th>Type</th>
<th>Range of use</th>
<th>Manufacturer</th>
<th>Calibration Date Last</th>
<th>Calibration Date Next</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.7 Overcharge</td>
<td>Programmable DC Source DS10014</td>
<td>1-100 Vdc, 0.3-14.4 A</td>
<td>MOTECH</td>
<td>2019/5/9</td>
<td>2020/5/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-486</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-459</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-460</td>
<td>Data Acquisition</td>
<td>MX100-E-1D</td>
<td>1-100 Vdc, -50 to 200°C</td>
<td>Yokogawa</td>
<td>2018/8/12</td>
<td>2019/8/12</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-919</td>
<td>Overcharge & Forced discharge tester T901</td>
<td>3-30 Vdc, Charge 0.05-20A, Discharge 0.02-10A</td>
<td>SMP</td>
<td>2019/5/10</td>
<td>2020/5/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.8 Forced Discharge</td>
<td>Electronic Load 3311C</td>
<td>60V 60A, 300W</td>
<td>Prodigit</td>
<td>2019/2/26</td>
<td>2020/2/26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-532</td>
<td>DC Electronic Load 33511-01</td>
<td>120V, 240A, 3600W</td>
<td>Prodigit</td>
<td>2019/7/17</td>
<td>2020/7/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-482</td>
<td>Programmable DC Source DS10014</td>
<td>1-100 Vdc, 0.3-14.4 A</td>
<td>MOTECH</td>
<td>2019/5/9</td>
<td>2020/5/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-486</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-459</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-460</td>
<td>Data Acquisition</td>
<td>MX100-E-1D</td>
<td>1-100 Vdc, -50 to 200°C</td>
<td>Yokogawa</td>
<td>2018/8/12</td>
<td>2019/8/12</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-918</td>
<td>Overcharge & Forced discharge tester T901</td>
<td>3-30 Vdc, Charge 0.05-20A, Discharge 0.02-10A</td>
<td>SMP</td>
<td>2019/5/10</td>
<td>2020/5/10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: DC Voltage: 0.1-1000V; AC Voltage: 0.5-7000V at 60Hz, 1kHz; Resistance: 100-10MΩ; DC Current: 0.1mA-3A; AC Current: 0.01-3A at 60Hz, 0.01-1A, at 1kHz.
T.1 Altitude Simulation

Start time: 2019/06/19 08:50
Finish time: 2019/06/19 15:48

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample State</th>
<th>Ambient temp.: 24.5 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-04</td>
<td>1 Cycle, Fully charged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-04</td>
<td>28 Cycles, Fully charged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T.2 Thermal Test

Start time: 2019/06/19 10:00
Finish time: 2019/06/19 20:00

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample State</th>
<th>Ambient temp.: 24.3 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-01</td>
<td>1 Cycle, Fully charged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-01</td>
<td>28 Cycles, Fully charged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T.3 Vibration

Start time: 2019/06/19 10:00
Finish time: 2019/06/19 20:00

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample State</th>
<th>Ambient temp.: 24.5 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-01</td>
<td>1 Cycle, Fully charged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-01</td>
<td>28 Cycles, Fully charged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T.4 Shock

Start time: 2019/06/19 10:00
Finish time: 2019/06/19 20:00

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample State</th>
<th>Ambient temp.: 24.0 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-01</td>
<td>1 Cycle, Fully charged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-01</td>
<td>28 Cycles, Fully charged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
T.5 External Short Circuit

<table>
<thead>
<tr>
<th>Start time: 2016/08/27 19:30</th>
<th>Ambient temp.: 26.2 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish time: 2016/08/28 09:20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCV (V)</td>
<td>Sample 01</td>
<td>Sample 02</td>
</tr>
<tr>
<td>After</td>
<td>0.090</td>
<td>0.090</td>
</tr>
<tr>
<td>Resistance (Ω<100mΩ)</td>
<td>58.4</td>
<td>59.0</td>
</tr>
<tr>
<td>Max Temp. (< 170°C)</td>
<td>57.3</td>
<td>57.9</td>
</tr>
<tr>
<td>Results</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

T.6 Impact / Crush (Component Cell)

<table>
<thead>
<tr>
<th>Start time: 2015/08/24 09:00</th>
<th>Ambient temp.: 24.2 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish time: 2015/08/24 09:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial OCV (V)</td>
<td>Sample 01C</td>
<td>Sample 02C</td>
</tr>
<tr>
<td></td>
<td>3.993</td>
<td>3.864</td>
</tr>
<tr>
<td>Max Temp. (< 170°C)</td>
<td>23.7</td>
<td>24.4</td>
</tr>
<tr>
<td>Results</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

T.7 Overcharge

<table>
<thead>
<tr>
<th>Start time: 2015/08/29 11:10</th>
<th>Ambient temp.: 24.7 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish time: 2015/08/29 11:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial OCV (V)</td>
<td>Sample 09</td>
<td>Sample 10</td>
</tr>
<tr>
<td></td>
<td>17.104</td>
<td>17.099</td>
</tr>
<tr>
<td>Results</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

T.8 Forced Discharge (Component Cell)

<table>
<thead>
<tr>
<th>Start time: 2016/08/22 09:00</th>
<th>Ambient temp.: 25.0 °C</th>
<th>Operator: Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish time: 2016/08/30 10:20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial OCV (V)</td>
<td>Sample 11C</td>
<td>Sample 12C</td>
</tr>
<tr>
<td>Results</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

9. Test Sample:

![Test Sample Image]