

Celxpert Energy(KunShan)Corporation

Battery Pack UN38.3 Test Report

Customer:	Lenovo
Model:	L20C3PG0
Nominal voltage:	11.52V
Poting Consoitur	Rated Capacity:3994mAh /46Wh
Rating Capacity:	Typical Capacity:4080mAh/47Wh
Issue Date:	July ,22 2020

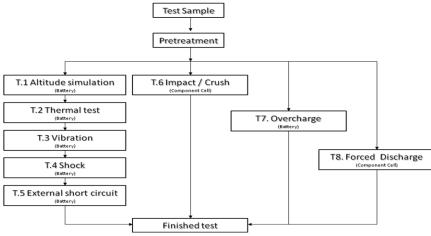
1.UN38.3 Lithium Battery Test Summary

Edition of UI Criteria Used		al of Tests and		ST/SG/AC.10	/11/Rev.6/Amend.1	
Customer		Lenovo		Sample type	Rechargeable Li-ion Battery	y
Model Name		L20C3PG0		Pack Configuration	3S1P	
Rating		Rated Capacity:3994mA Typical Capacity:4080n		Battery weight	186g	
Cell Factory,	/Model	BYD CSL485490 3994m	Ah	Physical Description	Prismatic	
Factory Addı	'ess	NO.1111, Hanpu Road, Kunshan City, Jiangsu I China		Laboratory Address	NO.1111, Hanpu Road, Yus Kunshan City, Jiangsu Pro China	
Factory Nam	e	Celxpert (kunshan) E	nengy.Co,Ltd.	Laboratory Name	CPK LAB	
Factory Tel		+86-512-57775999		Laboratory Tel	+86-512-57775999	
Factory E-ma	ail	Frank_Gao@cn.celxpert.com		Lab E-mail	Frank_Gao@cn.celxpert.co	m
Factory Web		www. celxpert.com.tw		Laboratory We	www. celxpert.com.tw	
Client Date		2020/06/17		Completing Dat	a 2020/07/21	
Item			Test Item		Test Result(Pass/l	Fail)
38.3.4.1	T1	Altit	ude simulation		Pass	
38.3.4.1	T2		Thermal		Pass	
38.3.4.1	Т3		Vibration		Pass	
38.3.4.1	T4		Shock		Pass	
38.3.4.1	Т5	Exter	nal Short Circui	t	Pass	
38.3.4.1	T6		Crush		Pass	
38.3.4.1	Τ7		Overcharge		Pass	
38.3.4.1	Т8	For	Forced Discharge		Pass	
	A	Approved By Che		ed By	Prepared By	
	南海洋		高海洋		高丈敏	
	Sec	ction manager	Section man	nager	Engineer	

表單編號 QS-3Q-043-02G

2.Test items and quantity

- T.1. X Altitude simulation
- T.2. 🛛 Thermal
- T.3. 🛛 Vibration
- T.4. 🛛 Shock


T.5. 🗵 External short circuit

T.6. ⊠Crush / □Impact

- T.7. 🛛 Overcharge
- T.8. 🛛 Forced Discharge

sum	summary table of required test for rechargeable cells and batteries											
			T.1	T.2	Т.3	T.4	T.5	Т.6	T.7	T.8	SUM	
		First cycle,50% charged state						5				
Cell		25th cycle,50% charged state						5			30	
UCII		First cycle, fully discharged state								10	50	
		25th cycle, fully discharged state							10			
<12kg	Small	First cycle, fully charged state			4				4		- 16	
	batteries	25th cycle, fully charged state		4					4		10	
>12kg	Large	First cycle, fully charged state		2					2			
	batteries	25th cycle, fully charged state	2						2		- 8	

3.Test Procedure

4.Photo of The Sample

Photo 1 Front

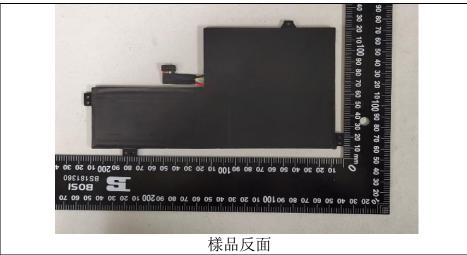


Photo 2 Rear

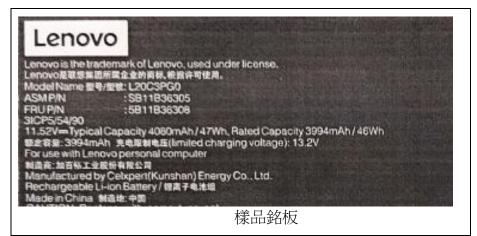


Photo 3 Label

5.Test method and verdict

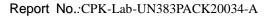
Clause	Req	Verdict			
	Mass bss means a	oss of mass that ex	ceeds the values in ta	ble 38.3.1 l	below
Table		Mass M of cell or battery	Mass loss limit		
38.3.1		M<1g	0.5%		
		1g≦M≦75g	0.2%		
		M>75g	0.1%		
		T1 :Altitude	simulation		
	This test simulates air transport under	ow-pressure cond	itions		No leakage
38.3.4.1	Test cells and batteries shall be stored a hour at ambient temperature ($20\pm5^{\circ}$)	at a pressure of 11.	6kPa or less for at lea	st six	no venting no disassemble
	Cells and batteries meet this requirement disassemble, no rupture and no fire and if t after testing is not less than 90% of its volta requirement relating to voltage is not appli states	he open circuit vol age immediately pr	tage of each test cell of ior to this procedure.	The	no rupture no fire. voltage not less than 90% Mass loss limit (see table 38.3.1)
		T2:Ther	mal test		
	This test assesses cell and battery seal i test is conducted using rapid and extrem			ons. The	
	Test cells and batteries are to be stored to $72\pm2^{\circ}$, followed by storage for at least s $^{\circ}$ C. The maximum time interval between te	No leakage no venting			
38.3.4.2	procedure is to be repeated until 10 total c		no disassemble		
00101112	batteries are to be stored for 24 hours at a				no rupture
	and batteries the duration of exposure to t	ne test temperatur	e extremes should be	at least 12	no fire voltage not less than 90%
	hours.	Mass loss limit			
	Cells and batteries meet this requireme disassemble, no rupture and no fire and if t	(see table 38.3.1).			
	after testing is not less than 90% of its volt				
	requirement relating to voltage is not appli				
	states.				
		T3:Vib	ration		
	This test simulates vibration during tra				
	Cells and batteries are firmly secured to				
	distorting the cells in such a manner as to f shall be a sinusoidal waveform with a logar				
	to 7 Hz traversed in 15 minutes. This cycle	-			
	for each of three mutually perpendicular m				
	of vibration must be perpendicular to the t				No leakage
	For cells and small batteries: from 7 Hz				no venting
38.3.4.3	Hz is reached. The amplitude is then mainta frequency increased until a peak accelerati				no disassemble
00101110	acceleration of 8gn is then maintained unti			. А реак	no rupture
	For large batteries: from 7 Hz to a peak			8 Hz is	no fire. voltage not less than 90%
	reached. The amplitude is then maintained				Mass bss limit
	frequency increased until a peak accelerati			. A peak	(see table 38.3.1)
	acceleration of 2gn is then maintained unti Cells and batteries meet this requireme				
	disassemble, no rupture and no fire during			n circuit	
	voltage of each test cell or battery directly				
	position is not less than 90% of its voltage i				
	requirement relating to voltage is not appli	cable to test cells a	nd batteries at fully d	ischarged	
	states.	5 / 12			l

Clause	Requirements	Verdict	
	T4:Shock		
	This test assesses the robustness of cells and batteries against cumulative shocks		
	Test cells and batteries shall be secured to the testing machine by means of a rigid mount which will support all mounting surfaces of each test battery		
38.3.4.4	Each cell shall be subjected to a half-sine shock of peak acceleration of 150gn and pulse duration of 6 milliseconds. Alternatively, large cells may be subjected to a half-sine shock of peak acceleration of 50gn and pulse duration of 11 milliseconds. Each battery shall be subjected to a half-sine shock of peak acceleration depending on the mass of the battery. The pulse duration shall be 6 milliseconds for small batteries and 11 milliseconds for large that the subject of the appropriate	No leakage no venting no disassemble no rupture no fire.	
	milliseconds for large batteries. The formulas below are provided to calculate the appropriate minimum peak accelerations. Each cell or battery is subjected to three shocks in the positive direction followed by three shocks in the negative direction of each of three mutually perpendicular mounting positions of the cell for a total of 18 shocks.	voltage not less than 90% Mass loss limit (see table 38.3.1)	
	Cells and batteries meet this requirement if there is no leakage, no venting, no disassemble, no rupture and no fire and if the open circuit voltage of each test cell or battery after testing is not less than 90% of its voltage immediately prior to this procedure. The requirement relating to voltage is not applicable to test cells and batteries at fully discharged states.		
	T5:External short circuit		
	This test simulates an external short circuit		
38.3.4.5	The cell or battery to be tested shall be shall be heated for a period of time necessary to reach a homogeneous stabilized temperature of $57\pm4^{\circ}$ C, measured on the external case. This period of time depends on the size and design of the cell or battery and should be assessed and documented. If this assessment is not feasible, the exposure time shall be at least 6 hours for small cells and small batteries, and 12 hours for large cells and large batteries. Then the cell or battery at $57\pm4^{\circ}$ C shall be subjected to one short circuit condition with a total external resistance of less than 0.1 ohm. This short circuit condition is continued for at least one hour after the cell or battery	no disassemble no rupture no fire. Packs exterior peak temperature <170°C	
	external case temperature has returned to 57 ± 4 °C, or in the case of the large batteries, has decreased by half of the maximum temperature increase observed during the test and remains below that value. The short circuit and cooling down phases shall be conducted at least at ambient	Mass boss limit (see table 38.3.1)	
	temperature. Cells and batteries meet this requirement if their external temperature does not exceed 170°C and there is no disassemble, no rupture and no fire within six hours of this test.		

6/12

Clause	Requirements	Verdict
	T6: Crush / Impact	
	These tests simulate mechanical abuse from an impact or crush that may result in an internal short circuit.	
	Impact applicable to cylindrical cells not less than 18.00 in diameter.	
	The test sample cell or component cell is to be placed on a flat smooth surface. A $15.8 \text{mm}\pm 0.1 \text{mm}$ diameter, at least 6cm long, or the longest dimension of the cell, whichever is greater, Type 316 stainless steel bar is to be placed across the centre of the sample. A 9.1 kg \pm 0.1kg mass is to be dropped from a height of 61 \pm 2.5 cm at the intersection of the bar and sample in a controlled manner using a near frictionless, vertical sliding track or channel with minimal drag on the falling mass. The vertical track or channel used to guide the falling mass shall be oriented 90 degrees from the horizontal supporting surface.	
	The test samples is to be impacted with its longitudinal axis parallel to the flat surface and perpendicular to the longitudinal axis of the 15.8mm±0.1mm diameter curved surface lying across the centre of the test samples. Each sample is to be subjected to only a single impact.	
38.3.4.6	Crush applicable to prismatic, pouch, coin/button cells and cylindrical cells less than 18mm in diameter.	no disassemble no rupture
30.3.4.0	A cell or component cell is to be crushed between two flat surfaces. The crushing is to be gradual with a speed of approximately 1.5cm/s at the first point of contact. The crushing is to be continued until the first of the three options below is reached. (a) The applied force reaches 13kN±0.78kN; Example : The force shall be applied by a hydraulic ram with a 32 mm diameter piston until a pressure of 17 MPa is reached on the hydraulic ram (b) The voltage of the cell drops by at least 100mV; or (c) The cell is deformed by 50% or more of its original thickness.	no fire. not exceed 170°C Mass bss limit (see table 38.3.1)
	Once the maximum pressure has been obtained, the voltage drops by 100mV or more, or the cell is deformed by at least 50% of its original thickness, the pressure shall be released	
	A prismatic or pouch cell shall be crushed by applying the force to the widest side. A button/coin cell shall be crushed by applying the force on its flat surfaces. For cylindrical cells, the crush force shall be applied perpendicular to the longitudinal axis.	
	Each test cell or component cell is to be subjected to one crush only. The test Samples shall be observed for a further 6 h. The test shall be conducted using test cells or component cells that have not previously been subjected to other tests.	
	Cells and component cells meet this requirement if their external temperature does not exceed 170 $^{\circ}$ C and there is no disassemble and no fire during the test and within six hours after this test.	

Clause	Requirements	Verdict	
	T7:Ovecharge		
	This test evaluates the ability of a rechargeable battery or a single cell rechargeable battery to withstand an overcharge condition		
	The charge current shall be twice the manufacturer's recommended maximum continuous charge current. The minimum voltage of the test shall be as follows:		
38.3.4.7	(a) When the manufacturer's recommended charge voltage is not more than 18V, the minimum voltage of the test shall be the lesser of two times the maximum charge voltage of the battery or 22V.	No disassemble no fire. Mass loss limit	
	(b) When the manufacturer's recommended charge voltage is more than 18V, the minimum voltage of the test shall be 1.2 times the maximum charge voltage.	Mass loss limit (see table 38.3.1)	
	Tests are to be conducted at ambient temperature; the duration of the test shall be 24 hours		
	Rechargeable batteries meet this requirement if there is no disassemble and no fire during the test and within seven days after the test.		
	T8:Forced discharge		
	This test evaluates the ability of a primary or a rechargeable cell to withstand a forced discharge condition		
38.3.4.8	Each cell shall be forced discharged at ambient temperature by connecting it in series with a 12V D.C. power supply at an initial current equal to the maximum discharge current specified by the manufacturer.	no disassembly no fire Mass bss limit (see table 38.3.1)	
	The specified discharge current is to be obtained by connecting a resistive load of the appropriate size and rating in series with the test cell Each cell shall be forced discharged for a time interval (in hours) equal to its rated capacity divided by the initial test current (in ampere).		
	Primary or rechargeable cells meet this requirement if there is no disassembly and no fire during the test and within seven days after the test.		



6.Test Data

3	8.3.4.1	T1.Altitude simulation								
Test	Equipment	t Digital Meter :Q-153 , Vacuum Oven :Q-0443 Scales :Q-090								
Test Period Start: 2020/06/17 End:2020/06/18										
Altitude Simulation Test on Charged Packs										
		Before		fter	voltage residue	mass loss				
No	OCV	Weight	OCV	Weight	Volt	Weight	other event			
	(V)	(g)	(V)	(g)	(%)	(%)				
1	17.651	186.06	17.569	186.00	99.54%	0.03%	0			
2	17.542	186.08	17.431	186.03	99.37%	0.03%	0			
3	17.619	186.12	17.526	186.08	99.47%	0.02%	0			
4	17.567	186.04	17.443	186.01	99.29%	0.02%	0			
5	17.524	186.02	17.412	185.96	99.36%	0.03%	0			
6	17.623	186.13	17.508	186.09	99.35%	0.02%	0			
7	17.518	186.05	17.376	185.98	99.19%	0.04%	0			
8	17.601	186.03	17.450	185.99	99.14%	0.02%	0			
Note:			sembly ; R-Ruptur , No Disassembly ,) Fire					
3	8.3.4.2			T2.T	hermal test					
Test	Equipment	Digital Meter :	Q-153 , Pr	ogrammable	Thermal Tester:Q	-0483 Sca	ales:Q-090			
Te	st Period	Start:2020/06/	/22 En	d:2020/06/28	8					
			Thermal	Test on Char	ged Packs					
	В	efore	Afte		voltage residue	mass loss				
No.	OCV	Weight	OCV	Weight	Volt	Weight	other event			
	(V)	(g)	(V)	(g)	(%)	(%)				
1	17.569	186.00	17.400	185.92	99.04%	0.04%	0			
2	17.431	186.03	17.273	185.98	99.09%	0.03%	0			
3	17.526	186.08	17.387	186.03	99.21%	0.03%	0			
4	17.443	186.01	17.282	185.95	99.08%	0.03%	0			
5	17.412	185.96	17.275	185.89	99.21%	0.04%	0			
6	17.508	186.09	17.337	186.03	99.02%	0.03%	0			
7	17.376	185.98	17.227	185.94	99.14%	0.03%	0			
8	17.450	185.99	17.319	185.93	99.25%	0.03%	0			
	-	-	sembly ; R-Rupture							
	O-No Leakag	e , No Venting , No	Disassembly , No	Rupture , No Fir	e					

38.	3.4.3	T3.Vibrationt									
Test Eq	uipment	ent Digital Meter :Q-153 Vibration Tester :Q-300 Scales:Q-090									
Test	Period Start: 2020/07/09 End:2020/07/10										
Vibration Test on Charged Packs											
		Before		ter	voltage residue	mass loss					
No.	OCV (V)	Weight (g)	OCV (V)	Weight (g)	Volt (%)	Weight (%)	other event				
1	17.400	185.92	17.336	185.88	99.63%	0.02%	0				
2	17.273	185.98	17.198	185.94	99.57%	0.02%	0				
3	17.387	186.03	17.300	185.97	99.50%	0.03%	0				
4	17.282	185.95	17.216	185.91	99.62%	0.02%	0				
5	17.275	185.89	17.181	185.83	99.46%	0.03%	0				
6	17.337	186.03	17.264	185.96	99.58%	0.04%	0				
7	17.227	185.94	17.166	185.89	99.65%	0.02%	0				
8	17.319	185.93	17.234	185.86	99.51%	0.04%	0				
Note: L-I	Leakage ; V	-Venting ; D-Disas	sembly ; R-Ru	oture ; F-Fire							
	O-No Leak	age , No Venting ,	No Disassemb	ly , No Rupture ,	No Fire						
38.	3.4.4				T.4 Shock						
Test Eq	uipment	Digital Meter:	Q-153	Shock Tester	:Q-154 Sca	ales:Q-090					
Test	Period	Start: 2020/07/	15	End:2020/07/	16						
	I			k Test on Cha	-						
Ne	001/	Before		After	voltage residue	mass loss	other event				
No.	OCV (V)	Weight (g)	OCV (V)	Weight (g)	Volt (%)	Weight (%)	other event				
1	17.336	185.88	17.302	185.85	99.80%	0.02%	0				
2	17.198	185.94	17.126	185.91	99.58%	0.01%	0				
3	17.300	185.97	17.246	185.96	99.69%	0.01%	0				
4	17.216	185.91	17.133	185.88	99.52%	0.02%	0				
5	17.181	185.83	17.119	185.80	99.64%	0.02%	0				
6	17.264	185.96	17.220	185.91	99.75%	0.03%	0				
7	17.166	185.89 17.094		185.87	99.58%	0.01%	0				
8	17.234	185.86	17.181	185.82	99.69%	0.02%	0				
	_	/enting ; D-Disasse			-						
O-No Leakage , No Venting , No Disassembly , No Rupture , No Fire											

Cel	(pert
	Corporation

38.3.4.5	T.5 External Short circuit								
Test Equipment	Digital N								
Test Period	Start: 20	20/07/20	End:2020/	/07/2:	1				
		No.	Max. Temp.(°C)	Oth	er event			
		1	56.32			0			
		2	55.12			0			
		3	56.47			0			
	_	4	55.26			0			
		5	55.83			0			
		6	56.18			0			
		7 8	55.34 56.29			0			
	N		sembly ; R-Rupt	ure · F	-Fire	0			
	•		Disassembly , No						
					·				
38.3.4.6				T.6 Cr	ush / Impact				
Test Equipment	Digital N	Meter:Q-153	Data Logger:	Q-15	2 Impact te	ester :Q-231/C	rush tester:Q-0437		
Test Period	Start: 20	20/06/28	End:2	020/0	6/29				
			Crush Test on	<mark>50%</mark>	Charged				
	No	Max. Temp.(°C	Other event		Max. Temp.(°C)	Other event			
	1	22.65	0	6	22.45	0			
	2	21.06	0	7	22.08	0			
	3	21.14	0	8	21.64	0			
	4	22.87	0	9	22.12	0			
	5	21.65	0	10	22.71	0			
	Note	e: D-Disasser	nbly;F-Fire / O-	No Dis	assembly , N	lo Fire			

Test Equipment Digital Meter:Q-153 Data Logger:Q-152 Power Supply unit:Q-236/Q-148/Q-150 Test Period Sart 2020/06/29 End:2020/07/10 End:2020/07/10 No. Charge Voltage(V) Charge Current(A) Max. Temp.(°C) Other event 9 0 21.04 O 22.05 O 11 22.0V 4.12 22.05 O 22.05 O 14 22.0V 4.12 22.05 O 22.05 O 15 0 22.0V 4.12 22.05 O 21.66 O 16 0 22.05 O 21.66 O 23.03 O 16 14 15 0 20.03 O 21.04 O 83.4.8 Test Equipment Digital Meter:Q-153 Data logger:Q-160 Power Supply unit:Q0474/Q0475/Q0476 Power Supply unit:Q0474/Q0475/Q0476 Test Period Start 2020/06/30 End:2020/07/10 Forced discharge are after 25 cycles ending in fully discharged No. Max. Temp.(°C) <td< th=""><th>38.3.4.7</th><th>7</th><th colspan="9">T 7 Overcharge</th></td<>	38.3.4.7	7	T 7 Overcharge								
Test PeriodSart 2 020/06/29End: 2020/06/29End: 2020/07/10OURAGE (No.Charge Charge Charge Current(ACharge Charge Current(ACharge Charge Current(AOther event9 100011 1223.15011 1223.25013 14022.7501423.03016021.65016021.65016021.26016021.26016023.030PorcePorcePorcePorceFertPorce <th< td=""><td></td><td>nt</td><td>Digital Mete</td><td>-148/Q-150</td></th<>		nt	Digital Mete	-148/Q-150							
No. Charge Voltage(V) Charge Current(A) Max. Temp.(°C) Other event 9 21.04 0 0 23.15 0 10 11 22.05 0 23.25 0 13 22.0V 4.12 23.25 0 21.26 0 14 15 0 22.75 0 21.26 0 16 16 23.03 0 21.26 0 21.26 0 16 16 23.03 0 23.03 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 0 21.26 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20			Start: 2020/0	6/29	End:202	0/07/10					
No. Voltage(V) Current(A) Max. Temp.(C) Other event 9 10 21.04 0 11 23.15 0 12 22.0V 4.12 23.25 0 14 15 21.26 0 21.26 0 16 22.75 0 21.26 0 21.26 0 16 vote: D-Disassembly ; F-Fire / O-No Disassembly ,No Fire 78 Forced discharge 0 23.03 0 Test end ischarge Fquipment Digital Meter:Q-153 Data logger:Q-160 Power Supply unit:Q0474/Q0475/Q0476 Forced discharge are after 25 cycles ending in fully discharged Max. Temp.(°C) Other event No. Max. Temp.(°C) Other event 11 56.13 O 21 61.28 O 12 62.25 O 22 41.52 O 13 52.76 O 23 53.57 O 14 43.25 O 24 43.48<											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			NO	U	U U	Max. Te	emp.(°C)	Other event			
$\begin{tabular}{ c c c c c c c } \hline 11 \\ \hline 12 \\ \hline 13 \\ \hline 14 \\ \hline 14 \\ \hline 15 \\ \hline 16 \\ \hline $						21.	.04	0			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{tabular}{ c c c c c c c } \hline 13 & 22.0V & 4.12 & 21.65 & 0 & 22.75 & 0 & 21.26 & 0 & 23.03 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$											
$\begin{tabular}{ c c c c c } \hline 14 \\ \hline 15 \\ \hline 16 \\ 16 \\$			')	22.0V	4.12						
$\begin{tabular}{ c c c c c c c } \hline 15 \\ \hline 16 \\ 16 \\$											
1623.03ONote: D-Disassembly ; F-Fire / O-No Disassembly ,No Fire38.3.4.8T8 Forced dischargeTest EquipmentDigital Meter:Q-153Data logger:Q-160Power Supply unit:Q0474/Q0475/Q0476Forced discharge are first cycle in fully dischargedForced discharge are after 25 cycles ending in fully dischargedForced discharge are first cycle in fully dischargedForced discharge are after 25 cycles ending in fully dischargedNo.Max. Temp.(°C)Other eventNo.Max. Temp.(°C)Other event1156.13O2161.28O1262.25O2241.52O1352.76O2443.48O1443.25O2443.48O1551.54O2552.13O1661.03O2663.75O1745.25O2755.36O1860.54O2853.63O1946.32O3063.24O											
Test Equipment Digital Meter:Q-153 Data logger:Q-160 Power Supply unit:Q0474/Q0475/Q0476 Test Period Start: 2020/06/30 End:202/07/10 Power Supply unit:Q0474/Q0475/Q0476 Forced discharge are first cycle in fully discharged Forced discharge are after 25 cycles ending in fully discharged No. Max. Temp.(°C) Other event No. Max. Temp.(°C) Other event 11 56.13 O 21 61.28 O 12 62.25 O 22 41.52 O 13 52.76 O 23 53.57 O 14 43.25 O 24 43.48 O 15 51.54 O 25 52.13 O 16 61.03 O 26 63.75 O 17 45.25 O 27 55.36 O 18 60.54 O 28 53.63 O 20 52.58 O 30 63.24 O			16					0			
Test Equipment Digital Meter:Q-153 Data logger:Q-160 Power Supply unit:Q0474/Q0475/Q0476 Test Period Start: 2020/06/30 End:2020/07/10 Power Supply unit:Q0474/Q0475/Q0476 Forced discharge are first cycle in fully discharged Forced discharge are after 25 cycles ending in fully discharged No. Max. Temp.(°C) Other event No. Max. Temp.(°C) Other event 11 56.13 O 21 61.28 O 12 62.25 O 22 41.52 O 13 52.76 O 23 53.57 O 14 43.25 O 24 43.48 O 15 51.54 O 25 52.13 O 16 61.03 O 26 63.75 O 17 45.25 O 28 53.63 O 18 60.54 O 28 53.63 O 19 46.32 O 30 63.24 O			Note: D-Di	sasseml	oly;F-Fire / C)-No Disas	sembly ,N	lo Fire			
Equipment Digital Meter:Q-153 Data logger:Q-160 Power Supply unit:Q0474/Q0476/Q0476 Test Period Sart: 2020/06/30 End:2020/07/10 Forced discharge are first cycle in fully discharged Forced discharge are after 25 cycles ending in fully discharged No. Max. Temp.(°C) Other event No. Max. Temp.(°C) Other event 11 56.13 O 21 61.28 O 12 62.25 O 22 41.52 O 13 52.76 O 23 53.57 O 14 43.25 O 24 43.48 O 15 51.54 O 25 52.13 O 16 61.03 O 26 63.75 O 17 45.25 O 27 55.36 O 18 60.54 O 28 53.63 O 19 46.32 O 30 63.24 O	38.3.4.8	3				T8 Forced o	lischarge				
Forced discharge are first cycle in fully discharged Forced discharge are after 25 cycles ending in fully discharged No. Max. Temp.(°C) Other event No. Max. Temp.(°C) Other event 11 56.13 O 21 61.28 O 12 62.25 O 22 41.52 O 13 52.76 O 23 53.57 O 14 43.25 O 24 43.48 O 15 51.54 O 25 52.13 O 16 61.03 O 26 63.75 O 17 45.25 O 28 53.63 O 18 60.54 O 28 53.63 O 19 46.32 O 30 63.24 O		nt	Digital Mete	r:Q-153	Data logge	er:Q-160	Power	Supply unit:Q0474	1/Q0475/Q0476		
discharged fully discharged No. Max. Temp.(°C) Other event No. Max. Temp.(°C) Other event 11 56.13 O 21 61.28 O 12 62.25 O 22 41.52 O 13 52.76 O 23 53.57 O 14 43.25 O 24 43.48 O 15 51.54 O 25 52.13 O 16 61.03 O 26 63.75 O 17 45.25 O 28 53.63 O 18 60.54 O 28 53.63 O 19 46.32 O 29 49.25 O 20 52.58 O 30 63.24 O	Test Perio	od	Start: 2020/0	6/30	End:202	0/07/10					
1156.1302161.2801262.2502241.5201352.7602353.5701443.2502443.4801551.5402552.1301661.0302663.7501745.2502755.3601860.5402853.6301946.3202949.2502052.5803063.240	Forced	diso	-	•	cle in fully	Forced d	•		les ending in		
12 62.25 0 22 41.52 0 13 52.76 0 23 53.57 0 14 43.25 0 24 43.48 0 15 51.54 0 25 52.13 0 16 61.03 0 26 63.75 0 17 45.25 0 27 55.36 0 18 60.54 0 28 53.63 0 19 46.32 0 29 49.25 0 20 52.58 0 30 63.24 0	No.	Ν	/lax. Temp.((°C)	Other event	No.	Max	. Temp.(°C)	Other event		
1352.7602353.5701443.2502443.4801551.5402552.1301661.0302663.7501745.2502755.3601860.5402853.6301946.3202949.2502052.5803063.240	11		56.13		0	21		61.28	0		
1443.2502443.4801551.5402552.1301661.0302663.7501745.2502755.3601860.5402853.6301946.3202949.2502052.5803063.240	12		62.25		0	22		41.52	0		
1551.5402552.1301661.0302663.7501745.2502755.3601860.5402853.6301946.3202949.2502052.5803063.240	13		52.76		0	23		53.57	0		
1661.0302663.7501745.2502755.3601860.5402853.6301946.3202949.2502052.5803063.240	14		43.25		0	24		43.48	0		
1745.2502755.3601860.5402853.6301946.3202949.2502052.5803063.240	15		51.54		0	25		52.13	0		
18 60.54 O 28 53.63 O 19 46.32 O 29 49.25 O 20 52.58 O 30 63.24 O	16		61.03		0	26		63.75	0		
1946.32O2949.25O2052.58O3063.24O	17		45.25		0	27		55.36	0		
20 52.58 O 30 63.24 O	18		60.54		0	28		53.63	0		
	19	19 46.32			0	29		49.25	0		
Note:D-Disassembly ; F-Fire / O-No Disassembly , No Fire	20		52.58		0	30		63.24	Ο		
	Note:D-D	isas	sembly ; F-	Fire / C)-No Disassei	mbly , No	Fire				